Hierarchical Corannulene‐Based Materials: Energy Transfer and Solid‐State Photophysics
نویسندگان
چکیده
We report the first example of a donor-acceptor corannulene-containing hybrid material with rapid ligand-to-ligand energy transfer (ET). Additionally, we provide the first time-resolved photoluminescence (PL) data for any corannulene-based compounds in the solid state. Comprehensive analysis of PL data in combination with theoretical calculations of donor-acceptor exciton coupling was employed to estimate ET rate and efficiency in the prepared material. The ligand-to-ligand ET rate calculated using two models is comparable with that observed in fullerene-containing materials, which are generally considered for molecular electronics development. Thus, the presented studies not only demonstrate the possibility of merging the intrinsic properties of π-bowls, specifically corannulene derivatives, with the versatility of crystalline hybrid scaffolds, but could also foreshadow the engineering of a novel class of hierarchical corannulene-based hybrid materials for optoelectronic devices.
منابع مشابه
Excitation energy transfer and trapping in dye-loaded solid particles.
The photophysics of several systems composed of a single dye or pairs of dyes attached to solid particles has been studied in the dry solid state at high dye concentrations taking into account light scattering and inner filter effects. Interaction among dye molecules and singlet-singlet energy transfer are relevant in these conditions, as has been demonstrated for pairs of dyes with suitable sp...
متن کاملQuantum dots coordinated with conjugated organic ligands: new nanomaterials with novel photophysics
CdSe quantum dots functionalized with oligo-(phenylene vinylene) (OPV) ligands (CdSe-OPV nanostructures) represent a new class of composite nanomaterials with significantly modified photophysics relative to bulk blends or isolated components. Singlemolecule spectroscopy on these species have revealed novel photophysics such as enhanced energy transfer, spectral stability, and strongly modified ...
متن کاملQuadruple Anionic Buckybowls by Solid-State Chemistry of Corannulene and Cesium
The buckybowl corannulene is known to be an excellent electron acceptor. UV photoelectron spectroscopy studies were performed with thin-film systems containing corannulene and cesium. Adsorption of submonolayer quantities of corannulene in ultrahigh vacuum onto thick Cs films, deposited at 100 K on a copper(111) substrate, induces a transfer of four electrons per molecule into the two lowest un...
متن کاملEffect of Thermal Conductivity and Emissivity of Solid Walls on Time-Dependent Turbulent Conjugate Convective-Radiative Heat Transfer
In the present study, the conjugate turbulent free convection with the thermal surface radiation in a rectangular enclosure bounded by walls with different thermophysical characteristics in the presence of a local heater is numerically studied. The effects of surface emissivity and wall materials on the air flow and the heat transfer characteristics are the main focus of the present investigati...
متن کاملStructure—Property Relationships for Exciton Transfer in Conjugated Polymers
The ability of conjugated polymers to function as electronic materials is dependent on the efficient transport of excitons along the polymer chain. Generally, the photophysics of the chromophore monomer dictate the excited state behavior of the corresponding conjugated polymers. Different molecular structures are examined to study the role of excited state lifetimes and molecular conformations ...
متن کامل